Assignment \#2: Rigid Motions and Homogeneous Transformations

Problem 1: In terms of the x_{0}, y_{0}, and z_{0} coordinates of a fixed frame $\{0\}$, the frame $\{1\}$ has its x_{1}-axis pointing in the direction $(0 ; 0 ; 1)$ and its y_{l}-axis pointing in the direction $(-1 ; 0 ; 0)$, and the frame $\{2\}$ has its x_{2}-axis pointing in the direction $(1 ; 0 ; 0)$ and its y_{2}-axis pointing in the direction $(0 ; 0 ;-1)$.
(a) Draw by hand the three frames, at different locations so that they are easy to see.
(b) Write down the rotation matrices R_{1}^{0} and R_{2}^{0}.
(c) Given R_{2}^{0}, how do you calculate R_{0}^{2} without using a matrix inverse?
(d) Write down R_{0}^{2} and verify its correctness using your drawing.

Problem 2: Four reference frames are shown in the robot workspace: the fixed frame $\{a\}$, the end-effector frame $\{b\}$, the camera frame $\{c\}$, and the work-piece frame $\{\mathrm{d}\}$.
(a) Calculate the following:

- O_{d}^{a}, O_{c}^{a}, and O_{c}^{d}.
- R_{d}^{a}, R_{c}^{a}, and R_{b}^{a}.
(b) Without using the matrix inverse, calculate the following:
- R_{a}^{d}, R_{a}^{c}, and R_{a}^{b}

Assignment \#2: Rigid Motions and Homogeneous Transformations

Problem 3: Let p be a point whose coordinates are $p=\{0.5 ; 1.2 ;-3\}$ with respect to the fixed frame $\{0\}$. Suppose that p is rotated about the fixed frame x-axis by 30 degrees, then about the fixed-frame y-axis by 135 degrees, and finally about the fixed-frame z -axis by -120 degrees.
(a) Find the rotation matrix \mathbf{R} that represents the final rotation.
(b) Calculate the new coordinates of the point p with respect to frame $\{0\}$ after rotation.
(c) Using MATLAB robotics toolbox, verify (a) and (b).

Problem 4:

Consider a robot arm mounted on a spacecraft as shown, in which frames are attached to the Earth $\{\mathrm{e}\}$, a satellite $\{\mathrm{s}\}$, the spacecraft $\{\mathrm{a}\}$, and the robot arm $\{r\}$, respectively.
(a) Given T_{s}^{e}, T_{a}^{e}, and T_{r}^{a} find T_{s}^{r}.
(b) Suppose that the frame $\{s\}$ origin as seen from $\{\mathrm{e}\}$ is $(1 ; 1 ; 1)$ and that

$$
T_{r}^{e}=\left[\begin{array}{cccc}
-1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & -1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Write down the coordinates of the frame $\{\mathrm{s}\}$
 origin as seen from frame $\{r\}$.

Problem 5: Given a fixed frame $\{0\}$ and a moving frame $\{1\}$ initially aligned with $\{0\}$, perform the following sequence of transformations on $\{1\}$:

1. Rotate $\{1\}$ about the $\{0\}$ frame x-axis by 30 degrees; call this new frame $\{2\}$.
2. Translate $\{2\}$ along the $\{0\}$ frame y-axis by 2 units; call this new frame $\{3\}$.
3. Rotate $\{3\}$ about its z-axis by 90 degrees; call this new frame $\{4\}$.
(a) What is the final transformation T_{4}^{0} ?
(b) Verify your answer in (a) using MATLAB robotics toolbox with animation.
