

Assignment #2: Rigid Motions and Homogeneous Transformations

Problem 1: In terms of the x_0 , y_0 , and z_0 coordinates of a fixed frame {0}, the frame {1} has its x_1 -axis pointing in the direction (0; 0; 1) and its y_1 -axis pointing in the direction (-1; 0; 0), and the frame {2} has its x_2 -axis pointing in the direction (1; 0; 0) and its y_2 -axis pointing in the direction (0; 0;-1).

(a) Draw by hand the three frames, at different locations so that they are easy to see.

- (b) Write down the rotation matrices R_1^0 and R_2^0 .
- (c) Given R_2^0 , how do you calculate R_0^2 without using a matrix inverse?
- (d) Write down R_0^2 and verify its correctness using your drawing.

Problem 2: Four reference frames are shown in the robot workspace: the fixed frame {a}, the end-effector frame {b}, the camera frame {c}, and the work-piece frame {d}.

(a) Calculate the following:

- O_d^a , O_c^a , and O_c^d .
- R_d^a , R_c^a , and R_b^a .
- (b) Without using the matrix inverse, calculate the following:
 - R_a^d , R_a^c , and R_a^b

Assignment #2: Rigid Motions and Homogeneous Transformations

Problem 3: Let *p* be a point whose coordinates are $p = \{0.5; 1.2; -3\}$ with respect to the fixed frame $\{0\}$. Suppose that *p* is rotated about the fixed frame x-axis by 30 degrees, then about the fixed-frame y-axis by 135 degrees, and finally about the fixed-frame z-axis by -120 degrees.

(a) Find the rotation matrix \mathbf{R} that represents the final rotation.

- (b)Calculate the new coordinates of the point p with respect to frame $\{0\}$ after rotation.
- (c) Using MATLAB robotics toolbox, verify (a) and (b).

Problem 4:

Consider a robot arm mounted on a spacecraft as shown, in which frames are attached to the Earth $\{e\}$, a satellite $\{s\}$, the spacecraft $\{a\}$, and the robot arm $\{r\}$, respectively.

(a) Given T_s^e, T_a^e, and T_r^a find T_s^r.
(b) Suppose that the frame {s} origin as seen from {e} is (1; 1; 1) and that

$$T_r^e = \begin{bmatrix} -1 & 0 & 0 & 1\\ 0 & 1 & 0 & 1\\ 0 & 0 & -1 & 1\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Write down the coordinates of the frame $\{s\}$ origin as seen from frame $\{r\}$.

Problem 5: Given a fixed frame $\{0\}$ and a moving frame $\{1\}$ initially aligned with $\{0\}$, perform the following sequence of transformations on $\{1\}$:

1. Rotate $\{1\}$ about the $\{0\}$ frame x-axis by 30 degrees; call this new frame $\{2\}$.

2. Translate {2} along the {0} frame y-axis by 2 units; call this new frame {3}.

3. Rotate {3} about its z-axis by 90 degrees; call this new frame {4}.

(a) What is the final transformation T_4^0 ?

(b) Verify your answer in (a) using MATLAB robotics toolbox with animation.